雷达源识别笔记
问AI话术和AI分析总结
我需要用模式识别算法对雷达源进行分类和识别,数据集为30个特定场景,每一个场景有几万条接收端依次接收到的雷达信号,每一条数据包括频率、脉冲宽度、到达时间、到达角度、幅度和脉内数据(复数序列表示),但是不知道每条数据究竟是哪种雷达发出的,只告诉一个场景下雷达的种类和个数。比如第一个场景给了几万条数据,但是只告诉第一个场景下有种类1雷达2个,种类2雷达3个。我该怎么选择算法,实现通过训练数据,得到任意给定一个场景下几万条数据,可以识别出雷达的种类和个数?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
%% 雷达辐射源识别系统 - 完整实现
% 包含30个训练场景和10个测试场景的完整处理流程
clear; clc; close all;
rng(42); % 固定随机种子
if isempty(gcp('nocreate')), parpool('threads'); end % 启动并行计算
%% 全局参数配置
fs = 5e6; % 采样频率
nRadarTypes = 50; % 雷达型号总数
stableFeatures = [1,3,5,7,9:12,14:17]; % 稳定特征索引
spatialFeatures = [4,8,13,18:19]; % 空间特征索引
%% ====================== 完整场景定义 ======================
[scene_radars, scene_counts] = init_scene_definitions();
%% ====================== 训练阶段 ======================
[trainData, trainMasks] = parallel_feature_processing('Train_data', scene_radars, scene_counts);
[model, normParams] = train_advanced_model(trainData, trainMasks, scene_radars, scene_counts);
save('radar_model.mat', 'model', 'normParams', 'scene_radars');
%% ====================== 测试阶段 ======================
testResults = cell(10,1);
parfor testIdx = 1:10
testFeatures = process_test_scene(testIdx, 'Test_data', normParams);
predLabels = radar_predictor(testFeatures, model, scene_radars);
testResults{testIdx} = results_postprocessor(predLabels, scene_radars);
end
%% 结果可视化
generate_analysis_report(testResults);
%% ====================== 核心函数定义 ======================
function [scene_radars, scene_counts] = init_scene_definitions()
scene_radars = cell(30,1);
scene_counts = cell(30,1);
% 场景1-19 (简单组合)
scene_radars{1} = [1,5,12]; scene_counts{1} = [3,2,2];
scene_radars{2} = [2,8]; scene_counts{2} = [3,3];
scene_radars{3} = [3,9,17]; scene_counts{3} = [3,3,2];
scene_radars{4} = [4,11]; scene_counts{4} = [3,3];
scene_radars{5} = [6,15,21]; scene_counts{5} = [3,2,2];
scene_radars{6} = [7,19,28]; scene_counts{6} = [3,2,2];
scene_radars{7} = [10,18,25]; scene_counts{7} = [3,2,2];
scene_radars{8} = [13,23,30]; scene_counts{8} = [3,2,2];
scene_radars{9} = [14,24,32]; scene_counts{9} = [3,2,2];
scene_radars{10} = [16,33]; scene_counts{10} = [3,3];
scene_radars{11} = [20,27,35]; scene_counts{11} = [3,2,2];
scene_radars{12} = [22,28,29]; scene_counts{12} = [3,2,2];
scene_radars{13} = [26,31,40]; scene_counts{13} = [3,2,2];
scene_radars{14} = [34,43,48]; scene_counts{14} = [3,2,2];
scene_radars{15} = [36,41,49]; scene_counts{15} = [3,2,2];
scene_radars{16} = [37,44]; scene_counts{16} = [3,3];
scene_radars{17} = [39,45]; scene_counts{17} = [3,3];
scene_radars{18} = [42,47]; scene_counts{18} = [3,3];
scene_radars{19} = [46,50]; scene_counts{19} = [3,3];
% 场景20-30 (复杂组合)
scene_radars{20} = [5,7,12,16,18]; scene_counts{20} = [2,2,2,1,1];
scene_radars{21} = [1,22,23,24,25]; scene_counts{21} = [2,2,2,1,1];
scene_radars{22} = [2,4,9,31,33]; scene_counts{22} = [2,2,2,1,1];
scene_radars{23} = [3,6,8,15,21]; scene_counts{23} = [2,2,2,1,1];
scene_radars{24} = [10,17,27,30,35]; scene_counts{24} = [2,2,2,1,1];
scene_radars{25} = [11,19,25,29,38]; scene_counts{25} = [2,2,2,1,1];
scene_radars{26} = [13,20,28,32,40]; scene_counts{26} = [2,2,2,1,1];
scene_radars{27} = [14,26,32,42,47]; scene_counts{27} = [2,2,2,1,1];
scene_radars{28} = [16,29,33,37,41]; scene_counts{28} = [2,2,2,1,1];
scene_radars{29} = [34,36,40,45,49]; scene_counts{29} = [2,2,2,1,1];
scene_radars{30} = [35,39,41,46,50]; scene_counts{30} = [2,2,2,1,1];
end
function [features, masks] = parallel_feature_processing(dataDir, sceneRadars, sceneCounts)
features = cell(30,1);
masks = cell(30,1);
parfor sceneIdx = 1:30
% 数据读取
pdwFile = fullfile(dataDir, sprintf('Train_PDW%d.csv', sceneIdx));
pdwData = readmatrix(pdwFile);
pdwData = fillmissing(pdwData, 'movmedian', 10);
% 脉内特征提取
plFile = fullfile(dataDir, sprintf('Train_PL%d.mat', sceneIdx));
plData = load(plFile);
plFeatures = extract_invariant_features(plData.IntrapulseSignal1, fs);
% 特征融合
combined = [pdwData, plFeatures];
features{sceneIdx} = combined;
% 生成场景掩码
masks{sceneIdx} = create_scene_mask(size(combined,1), sceneRadars{sceneIdx}, sceneCounts{sceneIdx});
end
features = vertcat(features{:});
masks = vertcat(masks{:});
end
function features = extract_invariant_features(plCell, fs)
features = zeros(numel(plCell), 15);
parfor i = 1:numel(plCell)
signal = plCell{i};
if numel(signal) < 10
features(i,:) = nan;
continue;
end
% 相位特征
phase = angle(hilbert(signal));
phaseFeatures = [mean(cos(phase)), std(diff(unwrap(phase))), sum(abs(diff(phase)) > pi/4)/numel(signal)];
% 形状特征
env = abs(hilbert(signal))/max(abs(hilbert(signal)));
shapeFeatures = [trapz(env.^2), find(env > 0.5,1)/numel(env), sum(diff(env) > 0)/numel(env)];
% 时频特征
[wt, ~] = cwt(signal, 'amor', fs);
wtEnergy = sum(abs(wt).^2, 2);
wtFeatures = [entropy(wtEnergy), sum(wtEnergy > 0.5*max(wtEnergy))];
features(i,:) = [phaseFeatures, shapeFeatures, wtFeatures];
end
features = fillmissing(features, 'movmedian', 10);
end
function mask = create_scene_mask(nSamples, radars, counts)
mask = zeros(nSamples, nRadarTypes);
ptr = 1;
for k = 1:length(radars)
mask(ptr:ptr+counts(k)-1, radars(k)) = 1;
ptr = ptr + counts(k);
end
end
function [model, normParams] = train_advanced_model(features, masks, sceneRadars, sceneCounts)
% 特征标准化
[stableData, spatialData] = feature_normalizer(features);
% 稳定特征聚类
[typeCenters, ~] = kmeans(stableData, nRadarTypes, 'Replicates',5, 'Options',statset('UseParallel',1));
% 空间特征建模
spatialModel = train_spatial_model(spatialData, masks);
% 全局优化
model = global_optimizer(typeCenters, spatialModel, sceneRadars, sceneCounts);
normParams = struct('stableMu',mean(stableData), 'stableSigma',std(stableData));
end
function [stableData, spatialData] = feature_normalizer(features)
stableData = (features(:, stableFeatures) - mean(features(:, stableFeatures))) ./ std(features(:, stableFeatures));
spatialData = features(:, spatialFeatures);
spatialData(:,1) = (spatialData(:,1) - median(spatialData(:,1))) / mad(spatialData(:,1));
spatialData(:,2) = (spatialData(:,2) - trimmean(spatialData(:,2),10)) / iqr(spatialData(:,2));
end
function spatialModel = train_spatial_model(spatialData, masks)
spatialModel = cell(nRadarTypes,1);
parfor r = 1:nRadarTypes
idx = find(masks(:,r));
if numel(idx) < 10
spatialModel{r} = [];
continue;
end
maxClusters = min(5, floor(numel(idx)/20));
bic = inf(1,maxClusters);
for k = 1:maxClusters
try
gm = fitgmdist(spatialData(idx,:), k, 'RegularizationValue',1e-6);
bic(k) = gm.BIC;
catch
bic(k) = inf;
end
end
[~, optimalK] = min(bic);
try
gm = fitgmdist(spatialData(idx,:), optimalK, 'Replicates',3);
spatialModel{r} = gm;
catch
spatialModel{r} = [];
end
end
end
function model = global_optimizer(typeCenters, spatialModel, sceneRadars, sceneCounts)
Aeq = zeros(30, nRadarTypes);
for s = 1:30
Aeq(s, sceneRadars{s}) = 1;
end
beq = cellfun(@sum, sceneCounts))';
f = zeros(nRadarTypes,1);
for r = 1:nRadarTypes
if ~isempty(spatialModel{r})
f(r) = spatialModel{r}.NumComponents;
else
f(r) = 1;
end
end
options = optimoptions('intlinprog', 'Display','final', 'Heuristics','advanced');
model.counts = intlinprog(f, 1:nRadarTypes, [],[],Aeq,beq, zeros(nRadarTypes,1), []);
model.typeCenters = typeCenters;
model.spatialModel = spatialModel;
end
function testFeatures = process_test_scene(testIdx, dataDir, normParams)
pdwFile = fullfile(dataDir, sprintf('Test_PDW%d.csv', testIdx));
pdwData = readmatrix(pdwFile);
pdwData = fillmissing(pdwData, 'movmedian', 10);
plFile = fullfile(dataDir, sprintf('Test_PL%d.mat', testIdx));
plData = load(plFile);
plFeatures = extract_invariant_features(plData.IntrapulseSignal1, fs);
combined = [pdwData, plFeatures];
stableTest = (combined(:, stableFeatures) - normParams.stableMu) ./ normParams.stableSigma;
testFeatures = [stableTest, combined(:, spatialFeatures)];
end
function predLabels = radar_predictor(testFeatures, model, sceneRadars)
stableTest = testFeatures(:,1:length(stableFeatures));
spatialTest = testFeatures(:,length(stableFeatures)+1:end);
typeDist = pdist2(stableTest, model.typeCenters);
spatialDist = zeros(size(testFeatures,1), nRadarTypes);
for r = 1:nRadarTypes
if ~isempty(model.spatialModel{r})
spatialDist(:,r) = mahal(model.spatialModel{r}, spatialTest);
else
spatialDist(:,r) = inf;
end
end
angleVar = var(spatialTest(:,1));
weight = 1 / (1 + exp(-10*(angleVar-0.3)));
combinedScore = (1-weight)*typeDist + weight*spatialDist;
[~, predLabels] = min(combinedScore, [], 2);
possibleTypes = unique([sceneRadars{:}]));
predLabels = predLabels(ismember(predLabels, possibleTypes));
end
function results = results_postprocessor(predLabels, sceneRadars)
[counts, types] = histcounts(predLabels, 1:nRadarTypes+1);
validIdx = counts > 0;
results = [types(validIdx)', counts(validIdx)'];
end
function generate_analysis_report(results)
figure('Position',[100 100 1200 800])
for i = 1:10
subplot(3,4,i)
bar(results{i}(:,2))
set(gca, 'XTickLabel', results{i}(:,1))
title(sprintf('测试场景%d',i))
xlabel('雷达型号'), ylabel('数量')
end
exportgraphics(gcf, 'Radar_Report.pdf')
end
初步想法
角度-时间用DBSCAN得到轨迹分类个体,然后在确定的个体上提取特征得到分类,再之后进行聚类,对于Test集体用聚类中心进行分类,或直接上神经网络
先分种类再分个体,需要特征工程做好
本文由作者按照 CC BY 4.0 进行授权